Blog

Comparison of   Fractions : Find the L.C.M. of the denominators of the given fractions. Convert each of  the fractions into an equivalent fraction with L.C.M. as the denominator, by multiplying both the numerator and denominator by the same number. The resultant fraction with the greatest numerator is the greatest.

 e.g. Find  the  greater  fraction  from  \frac{2}{3}  and  \frac{3}{4}.

 Soln. [ 3, 4 ]  =  12.

\frac{2}{3}\frac{2\times 4}{3\times4}   =   \frac{8}{12}         &      \frac{3}{4} =    \frac{3\times 3}{4 \times 3}   =   \frac{9}{12}

Hence,  \frac{3}{4}  is  greater one.

Denominators of   two fractions are same, then the fraction with greater numerator is greater.

e.g.  \frac{15}{7}  >  \frac{15}{8}

Numerators of   two fractions are same, then the fraction with smaller denominator is greater.

e.g.  \frac{15}{7}  >  \frac{15}{8}

 

e.g. Arrange the fractions  \frac{1}{3},\frac{3}{5},\frac{2}{9},\frac{5}{2}  in descending order.

 Method  1:

Take L.C.M. of  all denominators.

\therefore [ 3,  5,  9,  8 ]   =   90

\therefore  \frac{1}{3}=\frac{30}{90}  ,  \frac{3}{5}=0.6\frac{1}{3}=0.33 ,   \frac{5}{2}=\frac{255}{90}

\therefore Descending  order  is :  \frac{255}{90} , \frac{54}{90} , \frac{30}{90}\frac{20}{90}     or    \frac{5}{2}   >  \frac{3}{5}  >  \frac{1}{3}  > \frac{2}{9}

 Method  2: (Shortcut Method)

Convert each fraction into decimals.

\frac{5}{2}=2.5  ,  \frac{3}{5}=0.6  ,  \frac{1}{3}=0.33  ,  \frac{2}{9}=0.22

Clearly,  2.5  >  0.6  >  0.33  >  0.22

\therefore \frac{5}{2}  >  \frac{3}{5}  >  \frac{1}{3}  > \frac{2}{9}

Important  Rule  :   For fraction less than 1, if the difference between numerator and denominator of  each of  the given fractions remains the same, then the one with greater numerator is greater.

e.g. Arrange the following fractions in descending order.

\frac{17}{19}  ,  \frac{25}{27}  ,  \frac{41}{43}  ,  \frac{13}{15}  ,  \frac{5}{7}

Soln. In the given example difference between the numerator and denominator of  all these fractions is same and equal to 2. The one with larger numerator is larger. Proceeding in similar way.

Hence,  we have

\frac{41}{43} > \frac{25}{27} > \frac{17}{19}  > \frac{13}{15} >\frac{5}{7}

Click here to see examples

Share