Blog
Examples 11 to 15 of T-Ratios & Identities
- August 11, 2020
- Category: Examples 11 to 15 of T-Ratios & Identities
(11) If a2 + b2 + c2 = r2 and a = r cos A sin B, b = r sin A sin B, find the value of c.
Soln. a2 + b2 = r2 cos2 A sin2 B + r2 sin2 A sin2 B
= r2 sin2 B (cos2 A + sin2 A ) = r2 sin2 B
Now, a2 + b2 + c2 = r2 ⇒ c2 = r2 – ( a2 + b2 )
∴ c2 = r2 – r2 sin2 B = r2 ( 1 – sin2 B ) = r2 cos2 B
Hence, c = r cos B.
(12) Evaluate :
(i) sin 89o cos 29o – cos 89o sin 29o
(ii) cos 38o cos 22o – sin 38o sin 22o
(iii) cos 80o cos 50o + sin 80o sin 50o
(vi) sin 26o cos 19o + cos 26o sin 19o
Soln. (i) sin 890 cos 290 – cos 890 sin 290 = sin ( 890 – 290 ) = sin 600 = .
[ ∵ sin α cos β – cos sin β = sin (α – β ) ]
(ii) cos 380 cos 220 – sin 380 sin 220 = cos ( 380 + 220 ) = cos 600 =
[∵cos α cos β – sin α sin β = cos (α + β ) ]
(iii) cos 800 cos 500 + sin 800 sin 500 = cos ( 800 – 500 ) = cos 300 = .
[∵cos α cos β + sin α sin β = cos (α – β ) ]
(iv) sin 260 cos 190 + cos 260 sin 190 = sin ( 260 + 190 ) = sin 450 = .
[∵sin α cos β + cos α sin β = sin (α + β ) ]
(13) Find the values of tan 15o.
Soln. tan 150 = tan ( 600 – 450 ) = =
(14) If x = a sinα and y = b tanα, prove that : = 1.
Soln. Clearly, = cosecα and = cotα.
Squaring and subtracting, we get :
= ( cosec2α – cot2α ) = 1.
(15) If α and β are the angles lying in the second quadrant and α < β, then which one of the following is true ?
( a ) sin α < sin β ( b ) sin α > sin β ( c ) sin α = sin β.
Soln. In 2nd quadrant sin θ decreases as θ increases.
∴ α < β ⇒ sin α > sin β.