Blog
Some Basic Results
- August 16, 2020
- Category: Some Basic Results
No Comments
III Some Basic Results : –
- ( c ) = 0 ; Where c is a constant function.
2. ; If n ∈ N then x ∈ R OR If n ∈ Z then x ∈ R – { 0 }
If n ∈ R then x ∈ R+
- ( x ) = 1 ; x ∈ R – { 0 }
; x ∈ R+
- For ∀ x ∈ R ,
( sin x ) = cos x
( cos x ) = – sin x
- ( tan x ) = sec2 x
; x ∈ R –
( cot x ) = – cosec2 x
; x ∈ R – { kπ / k ∈ Z }
- ( sec x ) = sec x · tan x
; x ∈ R –
( cosec x ) = – cosec x · cot x
; x ∈ R – { kπ / k ∈ Z }
- ∀ x ∈ R and a ∈ R+ ,
( ax ) = ax loge a & ( ex ) = ex
- ∀ x > 0 , ( log x ) = OR log |x| = ; ∀ x ∈ R
- For |x| < 1 ,
( sin-1 x ) =
For |x| < 1 ,
( cos-1 x ) = –
- For ∀ x ∈ R ,
( sec-1 x ) =
For ∀ x ∈ R ,
( cosec-1 x ) = – .
- For |x| > 1 ,
( tan-1 x ) =
For |x| > 1 ,
( cot-1 x ) = –