Blog
Indefinite Integration
- August 16, 2020
- Category: Indefinite Integration
Indefinite Integration
I. If for the function g (x) defined on interval I ⊂ R ,
∀ x ∈ I , \frac{d}{dx} g ( x ) = f (x) ⇔ = g ( x ) + c
; Where, c = arbitrary constant
II If f is integrable on I = ( a , b ) ⊂ R and ∀ x ∈ I , then f is continuous on ∀ x
III. Working Rules : –
If f and g are integrable on I = ( a , b ) ⊂ R and ∀ x ∈ I , then
- = ±
2.
- If f : I → R is continuous with a ≠ 0 and = F (x) + c , then = F (ax+ b) + c
- If f and are continuous functions ( n ≠ 1, f (x) > 0 & (x) ≠ 0 ) , then = n+1n+1 + c
- If f is continuous on [ a , b ] , is differentiable on ( a , b ) and is also continuous ( f (x) ≠ 0 & (x) ≠ 0 ) , then ∀ x ∈ [ a , b ]
= log + c
- Integration by Parts : –
If u is differentiable and v is integrable, then
= – + c
Choice of u are taken in the order of L I A T E 1 : –
L = Logarithm e.g. log 2x + 3 , log x etc.
I = Inverse Trigonometry Functions e.g. sin-1 x , tan x etc.
A = Arithmetic Functions e.g. 2x + 3 , 5 x3 – 4 x2 + 7x – 9 etc.
T = Trigonometry Functions e.g. sin x, cos x etc.
E = Exponential Functions e.g. , ex
1 =1
IV Standard Integrals : –
- ; n ≠ – 1 & x ∈
- ,
&
- = ; x ∈ R – { 0 }
- = ; x ∈ R & a ∈ – { 1 }
- ; x ∈ R
- = tan x + c
= – cot x + c
- = sec x + c
- = ; ± a ≠ x ∈ R
12. = + c ; ± a ≠ x ∈ R
13. = log
14. If , then
= + c = – cos-1 + c ; a > 0
= – sin-1 + c = cos-1 + c ; a < 0
15. If |x | > |a| > 1 , then
= + c = – cosec-1 + c
16. = + c = – + c
17. ; x ≠ ( 2k + 1 ) , k ∈ Z
18. + c ; x ≠ k π , k ∈ Z
19. + c ; x ≠ 2 k π , k ∈ Z
= log + c
- = log + c ; x ≠ 2 k π , k ∈ Z
= log + c
- = + + c
- If , then
= – + c
- If |x | < a , then
= + + c
- = ( a sin bx – b cos bx ) + c
= + c ; θ = tan-1 & a, b≠ 0
- = ( a cos bx + b sin bx ) + c
= + c ; θ = tan-1 & a, b≠ 0
V Trigonometric Substitutions : –
Integral Substitution
- → x = a sin θ OR x = a cos θ
- → x = a sec θ OR x = a cosec θ
- → x = a tan θ OR x = a cot θ
- → x = a sin θ OR x = a cos 2θ
- → x = a tan θ OR x = a cos 2θ
- → x = 2a sin θ OR x = 2a cos θ
- → x = 2a tan θ OR x = 2a cot θ
- → x = a cos 2θ
Definite Integration
I = ; Where, h =
= h ; Where, h =
II Some Basic Concepts : –
Here, f is continuous on I = [ a, b ] .
- If = F ( x ) + c , then =
= F ( b ) – F ( a )
2. =
3.
4.
5. If a < c < b =
III. Working Rules : –
If f and g are integrable on I = ( a , b ) ⊂ R and ∀ x ∈ I , then
1. =
2.
IV Some Results : –
- If f is continuous on I = [ – a, a ] , then
= 2 ; f is even on [ – a, a ] with a ∈
= 0 ; f is odd on [ – a, a ] with a ∈
- If f is continuous on I = [ a , b ] , then
=
- If f is continuous on I = [ 0 , 2a ] , then
= +
- If f is continuous on I = [ 0 , 2a ] , then
= 2 ; f ( 2a – x) = f (x)
= 0 ; f ( 2a – x) = – f (x)