Blog
Parin Sir > Mathematical Proofs > Definite Integration > Pattern – 36 : Definite integration > Pattern – 36 : Definite integration
Pattern – 36 : Definite integration
- March 1, 2021
- Category: Pattern – 36 : Definite integration
No Comments
⋆ Pattern – 36
Proof :
Here,
Now,
…
Now,
= – [ 0 – 1 ]
= 1
∴ from 2,
= n(n-1)(n-2)…. 1
= n!
⋆ An Important Result
For ∀ x ∈ I,
x ∈ (n, n + 0.5) ⟹ {x} < { – x}
x = 0.5 ⟹ {x} = { – x}
x ∈ (n + 0.5, n + 1) ⟹ {x} > { – x}
Proof :
Let, x = 7, 2 ∈ (7, 7.5)
x : 7, 2 ⇒ [x] = 7
⇒ x – [x]= 7, 2.7
⇒ {x} = 0.2
x = 7.2 ⇒ -x : -7.2
⇒ [-x] = -8
⇒ -x – [ – x ]= 7.2-(-8)
⇒ { – x} = 0.8
{x} < {-x}
n + 0.5 :
x = 0.5 ∈ (0, 1)
x = 0.5 ⇒ [x] = [0,5] = 0
⇒ x – [x] = 0.5 – 0
⇒ {x} = 0.5
-x = -0.5 ⇒ [-x] = -1
⇒ x – [-x] = -0.5 + 1
⇒ {-x} = 0.5
(n+ 0.5, n+1) :
x = 7.7 ∈ (7.5 , 8)
x = 7.7 ⇒ [x] = 7
⇒ x – [x] = 7.7-7
⇒ {x} = 0.7
-x = -7.7 ⇒ [-x] = -8
⇒ -x –[-x]=-7.7 + 8
⇒ {-x} = 0.3
{x} > {-x}
Thank you…