Indefinite Integration

24
Feb
Pattern - 39 of Indefinite Integration

Pattern – 39 :

\int\frac{ax+b}{\left(px^2+qx+r\right)\ \sqrt{mx+n\ }}dx\ \ \ or\ \ \

\int\frac{1}{\left(px^2+qx+r\right)\ \sqrt{mx+n}}dx,\ then\ put\ mx+n=t^2

 

1) Evaluate :

Share
Posted in: Pattern - 39 of Indefinite Integration,
24
Feb
Pattern - 38 of Indefinite Integration

Pattern – 38 :

\int\frac{1}{\left(px+q\right)\sqrt{ax+b}}dx, then put ax + b +

Share
Posted in: Pattern - 38 of Indefinite Integration,
Tags: pattern, indefinite, sabiti, math, ganit, integration,
24
Feb
Pattern - 37 of Indefinite Integration

⋆ Pattern – 37

\int\frac{1}{\sqrt{\left(x-a\right)\left(b-x\right)}}dx,\ \int\sqrt{\fr...
</p>
<div class=

Share
Posted in: Pattern - 37 of Indefinite Integration,
Tags: math, ganit, integration, pattern, indefinite, sabiti,
20
Feb
Pattern - 36 of Indefinite Integration

Pattern 36 :

\ I_n=\ \int\left(\log{x}\right)^n\ dx, then

Share
Posted in: Pattern - 36 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
20
Feb
Pattern - 35 of Indefinite Integration

⋆ Pattern – 35

I_n=\ \int x^n\ e^{ax}\ dx

∴ 

Share
Posted in: Pattern - 35 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,