Blog

H.C.F. and L.C.M. of   Decimal Fractions : In given numbers, make the same number of decimal places by annexing zeros in some numbers, of necessary. Considering these numbers without decimal point, find H.C.F. or L.C.M. of   as the case may be. Now, in the result, mark off as many decimal places as are there in each of   the given numbers.

 e.g. Find  the  H.C.F.  and  L.C.M.  of    3.15,  3.6   and   9

 Soln. 3.15  \times  100  =   315

3.6   \times  100  =   360

\times  100  =   900

Now,  ( 315, 360, 900 )  =  45    and    [ 315, 360, 900 ]  =  12600

\therefore ( 3.15, 3.6, 9 )  =  0.45    and    [ 3.15, 3.6, 9 ]  =  126

 e.g. Another method  to  Find  the  H.C.F.  and  L.C.M.  of    3.15,  3.6   and   9

Soln. 3.15   = \frac{315}{100}   =  \frac{63}{20}  ;            3.6   =  \frac{36}{10}   =  \frac{18}{5}  ;               9   =  \frac{9}{1}

Now, \left (\frac{63}{20},\frac{18}{5},\frac{9}{1} \right )    =   \frac{H.C.F. - of - 63,18,9 }{L.C.M.-of- 20,5,1 }   =   \frac{9}{20}  =   0.45

&    \left [\frac{63}{20}, \frac{18}{5}, \frac{9}{1} \right ] =   \frac{L.C.M. - of - 63,18,9 }{H.C.F.-of - 20,5,1 }   =   \frac{126}{1}   =   126

 Note  : Hence, the necessary and sufficient condition for applying the above method   is convert the fraction in reduced form.

 

Click here to see next topic

Share