Blog
Multiplication By Short Cut-Methods
- May 27, 2020
- Category: Multiplication By Short Cut-Methods
Multiplication of a Number By 99, 999, 9999 etc. : Place as many zeros to the right of the multiplicand as is the number of nines and from the number so formed, subtract the multiplicand to get the answer.
e.g. Multiplying 596378 by 99999.
Soln. Using the above rule, we have:
596378 99999 = (59637800000 – 596378) = 59637233622.
Multiplication Of a Number By 5n : Put ‘n’ zeros to the right of the multiplicand and divide the number so formed by 2n.
e.g. Multiply 975436 by 625.
Soln. We may write, 625 = 54.
975436 625 = 975436 54 = = 609647500.
Multiplication By Distributive Law : We use the laws :
- a b + a c = a (b + c) II. a b – a c = a (b – c)
Example Evaluate : 972 214 + 972 786.
Solution 972 214 + 972 786 = 972 (214 + 786) = 972 1000 = 972000.
Example Evaluate : 512 318 – 512 218.
Solution 512 318 – 512 218 = 512 (318 – 218) = 512 100 = 51200.
- (a + b)2 = a2 + b2 + 2ab
- (a – b)2 = a2 + b2 – 2ab
- (a + b)2 – (a – b)2 = 4ab
- (a + b)2 + (a – b)2 = 2(a2 + b2)
- a2 – b2 = (a + b) (a – b)
- ( a + b )3 = a3 + b3 + 3 a b (a + b)
- 7. ( a – b )3 = a3 – b3 – 3 a b (a – b )
- a3 + b3 = (a + b) (a2 – ab + b2)
= ( a + b )3 – 3 a b (a + b)
- a3 – b3 = (a – b) (a2 + ab + b2)
= ( a – b )3 + 3 a b (a – b)
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
- a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
- If a + b + c = 0, then a3 + b3 + c3 = 3abc.
Examples :
1 .Evaluate : [(1856)2 – (144)2].
Solution. [(1856)2 – (144)2] = (1856 + 144) (1856 – 144)
= (2000) (1712)
= 342400
2 .Find the value of :
Solution. Given Exp. = , where a = 905 & b = 298
=
= 2 [ (a + b)2 + (a – b)2 = 2(a2 + b2) ]
3. Evaluate :
Solution. Given Exp. = , where a = 675 & b = 396
= ( a – b )
= 675 – 396
= 279
4. Evaluate :
Solution. Given Exp. = , where a = 512 & b = 173
= ( a + b )
= ( 512 + 173 )
= 685
5. Evaluate : (286 286 + 214 214 + 2 286 214).
Soln. Given Exp. = (a2 + b2 + 2ab), where a = 286 & b = 212.
= (a + b)2
= (286 + 214)2
= (500)2
= 250000
6. Evaluate : (i) (1207)2 (ii) (1398)2
(i) (1207)2 = (1200 + 7)2
= (1200)2 + (7)2 + 2 1200 7 [(a + b)2 = a2 + b2 + 2ab]
= (1440000 + 49 + 16800)
= 1456849
(ii) (1398)2 = (1400 – 2)2
= (1400)2 + (2)2 – 2 1400 2 [(a – b)2 = a2 + b2 – 2ab]
= (1960000 + 4 – 5600)
= 1954404
7. Find the total number of prime factors in ( 648 352 118 657 ).
Solution. Given Exp. = (2 3)48 352 118 (5 13)7
= 248 3100 57 118 137
Total number of prime factors = (48 + 100 + 7 + 8 + 13) = 176.