I=
Where, q ( x ) =
1) I=
Now, ( x – 1 ) ( x – 2 ) ( x – 3 )
= ( – 3x + 2) ( x – 3 )
= – – +9x + 2x – 6
= – 6 + 11x – 6
=
Let,
∴ -50 + 108x – 60 = A(x-2) (x-3) + B(x-1)(x-3) + C(x-1)(x-2) —-(3)
x = 1 ⇒ -50 + 108 – 60 = A(-1) (-2) + 0 + 0
⇒ -2 = A × 2
⇒ -1 = A
x = 2 ⇒ -200 + 216 – 60 = 0 + B (1) (-1) + 0
⇒ -44 = – B
⇒ B = 44
x = 3 ⇒ -450 + 324 – 60 = 0 + 0 + c (2) (1)
⇒ -186 = 2c
⇒ -93 = c
∴ I = ∫(x – 10) dx + (-1) ∫ + 44 ∫ dx – 93 ∫
= – 10x – log | x – 1 | + 44 log | x – 2 | – 93 log | x – 3 | + c
Click here to see next pattern.