Blog
Pattern - 18 of Indefinite Integration
- February 18, 2021
- Category: Pattern - 18 of Indefinite Integration
⋆ Pattern – 18
I= where, d ( p ( x ) ) < d ( q ( x ) )
Where, q ( x ) = (x –
) (
) × (
) × (
)
1) —-(1)
Here,
=
+
+
—-(2)
∴ + B (x – 1)(x + 1) + C(x + 1) + D
—-(3)
x = 1 ⇒ 1 = c ( 1 + 1 )
⇒ 1 = 2c
⇒ = c
x = -1 ⇒ 1 = D
= -8D
⇒ = D
We have, c = , D =
x = 2 ⇒ 4 = A + B(1)(3) +
–
⇒ 4 = 3A + 3B +
⇒ 32 = 24A + 24B + 12 – 1
⇒ 32 = 24A + 24B + 11
⇒ 21 = 24A + 24B
Now,
x = 0 ⇒ 0 = A × 1 × 1 + B(-1)(1) + (1) –
(-1)
⇒ 0 = A – B + +
⇒ 0 = 8A – 8B + 4 + 1
⇒ -5 = 8A – 8B
Hence, we have
24A + 24B = 21 ——(4)
8A – 8B = -5 ———-(5)
from (4) & (5)
24A + 24B = 21
24A – 24B = -15
48A = 6
∴ A =
from (5),
1 – 8B = -5
∴ -8B = -6
∴ B =
form (3),
= A(
– 2x + 1)(x+1) + B (
-1) + c ( x + 1) + D(
– 3
+ 3x – 1)
= A( – 2x + x + 1) + B (
-1 )+c ( x + 1 ) + D(
+ 3x -1 )
∴ = (A+D)
+ (-A + B – 3D)
+ (-A + C + 3D)x + ( A – B + C – D )
Comparing,
A + D = 0
∴ A – ∴ A = |
-A + B – 3D = 1
∴ ∴ ∴ B = 1 – ∴ B = ∴ B = |
-A + C + 3D = 0 &
A – B + C – D = 0 |
Also, we have, C = , D =
, A =
, B =
+
+
–
= +
+
–
= –