maths

25
Feb
Pattern – 2 : Indefinite Integration

⋆ Pattern – 2 :

If ∫f(x) dx = F(x) +c, then

∫ f (a + b) dx = \frac{1}{a} F ( ax + b )dx + c  :  a ≠ 0

Share
Posted in: Pattern – 2 : Indefinite Integration,
Tags: of, dx, maths, 1/a, mathematics, sabiti, ganit, proof, f(ax+b), definition, math maths, formula, any, Definite, integration, math, pattern,
20
Feb
Pattern - 36 of Indefinite Integration

Pattern 36 :

\ I_n=\ \int\left(\log{x}\right)^n\ dx, then

Share
Posted in: Pattern - 36 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
20
Feb
Pattern - 35 of Indefinite Integration

⋆ Pattern – 35

I_n=\ \int x^n\ e^{ax}\ dx

∴ 

Share
Posted in: Pattern - 35 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
20
Feb
Pattern - 33 of Indefinite Integration

⋆ Pattern – 33

I_n=\ \int x^n sin\ mx\ dx, then I_n

Share
Posted in: Pattern - 33 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
20
Feb
Pattern - 32 of Indefinite Integration

⋆ Pattern – 32

I_n=\cos^n{x} dx

Share
Posted in: Pattern - 32 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
20
Feb
Pattern - 31 of Indefinite Integration

⋆ Pattern – 31

I_n=\ \int\sin^n{x}\ dx, then

Share
Posted in: Pattern - 31 of Indefinite Integration,
Tags: maths, formula, pattern, sabiti,
19
Feb
Pattern - 30 of Indefinite Integration

⋆ Pattern – 30

I_n=\ \int{\rm cosec}^n\ x\ dx, then

Share
Posted in: Pattern - 30 of Indefinite Integration,
Tags: maths, proof, pattern, sabiti,