proof

01
Mar
Pattern – 24 : Definite integration

⋆ Pattern – 24(Leibnitz’s Theorem)

If f is a continuous function on [a, b] and u(x) and v(x) are differentiable functions of x whose values lie in [a, b], then

Share
Posted in: Pattern – 24 : Definite integration,
Tags: math, pattern, of, sabiti, maths, mathematics, ganit, proof, definition, formula, any, Definite, integration,
01
Mar
Pattern – 22 : Definite integration

⋆ Pattern – 22

If f(t) is an even function then

g\left(x\right)\ =\ \int_{0}^{x}f\ \left(t\right)dt

Share
Posted in: Pattern – 22 : Definite integration,
Tags: formula, any, Definite, integration, math, pattern, of, sabiti, maths, mathematics, ganit, proof, definition,
01
Mar
Pattern – 21 : Definite integration

⋆ Pattern – 21

If  f(t) is an odd function, then

\emptyset\left(x\right)\ =

Share
Posted in: Pattern – 21 : Definite integration,
Tags: integration, math, pattern, of, sabiti, maths, mathematics, ganit, proof, definition, formula, any, Definite,
28
Feb
Pattern – 20 : Definite integration

⋆ Pattern – 20 :

If f(x) is an odd periodic defined on interval \left[-\frac{T}{2},\ \ \frac{T}{2}\right] , whe…

Share
Posted in: Pattern – 20 : Definite integration,
Tags: mathematics, ganit, proof, definition, formula, any, Definite, integration, math, pattern, of, sabiti, maths,
28
Feb
Pattern – 19 : Definite integration

⋆ Pattern – 19 ( Odd Function )

If f is an odd periodic function with principal period T, then    is an even periodic function with principal period T.

Proof :

Let, g(x) –

Share
Posted in: Pattern – 19 : Definite integration,
Tags: definition, formula, any, Definite, integration, math, pattern, of, sabiti, maths, mathematics, ganit, proof,
28
Feb
Pattern – 18 : Definite integration

⋆ Pattern – 18(Even – off function) :

If f is a periodic function with principal period T, then

\int_{0}^{T}f\left(t\right)dt =

Share
Posted in: Pattern – 18 : Definite integration,
Tags: integration, math, pattern, of, sabiti, maths, mathematics, ganit, proof, definition, formula, any, Definite,