proof

19
Feb
Pattern - 21 of Indefinite Integration

⋆ Pattern – 21

\int\frac{1}{\left(ax+b\right)^m\ \left(cx+d\right)^n}dx; where, m+n=2

1)  I = 

Share
Posted in: Pattern - 21 of Indefinite Integration,
Tags: maths, proof, pattern, sabiti,
18
Feb
Pattern - 19 of Indefinite Integration

⋆ Pattern – 19

I=\ \int\frac{p\left(x\right)}{q\left(x\right)}\ dx_1    where, d ( p ( x ) ) < d (…

Share
Posted in: Pattern - 19 of Indefinite Integration,
Tags: maths, ganit, proof, proofs, sabiti, meeting,
18
Feb
Pattern - 18 of Indefinite Integration

⋆ Pattern – 18

I=\ \int\frac{p\left(x\right)}{q\left(x\right)}\ dx_1\ where, d ( p ( x ) ) < d ( …

Share
Posted in: Pattern - 18 of Indefinite Integration,
Tags: proofs, sabiti, meeting, maths, ganit, proof,
18
Feb
Pattern - 15 of Indefinite Integration

⋆ Pattern – 15

1) ∫ e^{ax} sin (bx + k) dx

Share
Posted in: Pattern - 15 of Indefinite Integration,
Tags: maths, ganit, proof, proofs, sabiti, meeting,
18
Feb
Pattern - 14 of Indefinite Integration

⋆ Pattern – 14 ( Some special formulas )

1)\ \i...
</p>
<div class=

Share
Posted in: Pattern - 14 of Indefinite Integration,
Tags: proofs, sabiti, meeting, maths, ganit, proof,
18
Feb
Pattern - 13 of Indefinite Integration

⋆ Pattern – 13

Integration by parts ∫ uv dx = u ∫ vdx – ∫\left(\frac{du}{dx}\ \int v\ dx\right) dx

wh…

Share
Posted in: Pattern - 13 of Indefinite Integration,
Tags: maths, ganit, proof, proofs, sabiti, meeting,